Modeling of future COVID-19 cases, hospitalizations, and deaths, by vaccination rates, nonpharmaceutical interventions adherence, and new variants scenarios

The COVID-19 Scenario Modeling Hub convened several modeling teams to provide long-term, 6-month projections in the US. The Hub has produced so far 14 rounds of projections based on scenarios aimed at enveloping the future drivers of the COVID-19 trajectory in the US (Vaccine delivery/administration, SARS-CoV-2 variants prevalence, relaxation of non-pharmaceuticals interventions (NPIs), etc.). The Hub aims at providing results based on ensembling the results of the different modeling teams.

Here we report the specific results of our specific modeling approach. The projections in this study are intended to bound plausible outbreak trajectories and should not be considered as forecasts of the most likely outcome. Considerable uncertainty is inherent when modeling the trajectory of COVID-19 over long timeframes because of deviations that may or may not be captured by the different scenarios (e.g., vaccine hesitancy, change in the pace of NPIs relaxation, etc.). The results for Round 4 appear in the MMWR report according to scenarios and data defined in late March 2021.

Update 7/29/21: Scenarios 4 through 6 do not include explicitly the modeling of the Delta variant, according to the scenario hub definitions, and we have discontinued their update.

Update 11/24/21: Scenarios 7 through 9 do not include explicitly the modeling of the Omicron variant, according to the scenario hub definitions, and we have discontinued their update.

Update 6/13/22: Scenarios 13 and 13.1 do not explicitly include the modeling of the Omicron sub-variants: BA.2, BA.2.12.1, BA.4, and BA.5.

Update 6/30/22: Scenario 14 does not explicitly include the modeling of the Omicron sub-variants: BA.4 and BA.5

Scenario Definitions
Extended Scenario Definitions*
Round 14.1
(includes modeling of Omicron sub- variants BA.4/BA.5)
Round 13.1
(Different waning time distribution)
Round 11.1
(Updated calibration timeline)
Round 9.1
(Updated calibration timeline)
Round 7.1
(Updated calibration timeline)
Round 6.1
(Complete Fall school reopening with updated school calendars)

*Note: extended scenarios provide updates and extensions to existing scenario hub scenarios (e.g. extended calibration timelines, updated NPIs calibrations, etc..). Differences are listed within the scenario definition of each extension.

Scenarios defined as of May 2, 2021  |  Model projecting from Epiweek 2021-17 to Epiweek 2021-43

United states Scenario PROJECTIONS

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
‍Moderate NPI

Scenario D
Low vaccination
Low NPI

SCENARIO projections by state

Select a state:

ALABAMA

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

Alaska

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

maine

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

wyoming

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

ARIZONA

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

arkansas

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

california

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

colorado

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

connecticut

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

delaware

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

district of columbia

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

florida

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

georgia

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

hawaii

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

idaho

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

illinois

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

indiana

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

iowa

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

kansas

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

kentucky

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

louisiana

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

wisconsin

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

maryland

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

Arizona

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

michigan

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

minnesota

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

mississippi

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

missouri

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

montana

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

nebraska

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

nevada

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

new hampshire

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

New Jersey

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

New mexico

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

New york

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

North carolina

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

north dakota

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

ohio

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

oklahoma

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

Oregon

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

Pennsylvania

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

rhode island

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

South Carolina

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

south Dakota

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

Tennessee

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

texas

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

Utah

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

Vermont

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

Virginia

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

washington

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

west virginia

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

massachusetts

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

Figures show the median, the IQR and the 90%RR

ARKANSAS

scenario a
High vaccination
Moderate NPI

Scenario B
High vaccination
Low NPI

Scenario C
Low vaccination
Moderate NPI

Scenario D
Low vaccination
Low NPI

scenario
definitions
round 5

About

To study the spatiotemporal COVID-19 spread, we use the Global Epidemic and Mobility Model (GLEAM), an individual-based, stochastic, and spatial epidemic model [1, 2, 3, 4, 5, 6]. GLEAM uses real-world data to perform in-silico simulations of the spatial spread of infectious diseases at the global level.  We use the model to analyze the spatiotemporal spread and magnitude of the COVID-19 epidemic in the USA at the county level. The data are aggregated to provide the estimates at the State level. The model generates an ensemble of possible epidemic projections described by the number of newly generated infections, hospitalizations, and deaths. The model is calibrated on weekly deaths data from the Johns Hopkins Centers for Civic Impact by using an information theoretical approach.

For each state and scenario, we report the weekly median number of projected cases, hospitalizations, and deaths with the interquartile range and 90% CI.

Disclaimer: There are large uncertainties around the transmission of COVID-19, the effectiveness of different policies and the extent to which the population is compliant to social distancing measures. The presented material is based on modeling scenario assumptions informed by current knowledge of the disease and subject to change as more data become available.

Acknowledgements: We acknowledge support from grant HHS/CDC 6U01IP001137 & HHS/CDC 5U01IP0001137. The findings and conclusions in this study are those of the authors and do not necessarily represent the official position of the funding agencies, the National Institutes of Health, or the U.S. Department of Health and Human Services.

Team

Northeastern University/MOBS Lab
• Matteo Chinazzi
• Jessica T. Davis
• Kunpeng Mu
• Ana Pastore y Piontti
• Xinyue Xiong
• Alessandro Vespignani

More COVID-19 Research